A Putative Drosophila Pheromone Receptor Expressed in Male-Specific Taste Neurons Is Required for Efficient Courtship
نویسندگان
چکیده
Propagation in higher animals requires the efficient and accurate display of innate mating behaviors. In Drosophila melanogaster, male courtship consists of a stereotypic sequence of behaviors involving multiple sensory modalities, such as vision, audition, and chemosensation. For example, taste bristles located in the male forelegs and the labial palps are thought to recognize nonvolatile pheromones secreted by the female. Here, we report the identification of the putative pheromone receptor GR68a, which is expressed in chemosensory neurons of about 20 male-specific gustatory bristles in the forelegs. Gr68a expression is dependent on the sex determination gene doublesex, which controls many aspects of sexual differentiation and is necessary for normal courtship behavior. Tetanus toxin-mediated inactivation of Gr68a-expressing neurons or transgene-mediated RNA interference of Gr68a RNA leads to a significant reduction in male courtship performance, suggesting that GR68a protein is an essential component of pheromone-driven courtship behavior in Drosophila.
منابع مشابه
A Drosophila Gustatory Receptor Essential for Aversive Taste and Inhibiting Male-to-Male Courtship
Contact chemosensation is required for several behaviors that promote insect survival. These include evasive behaviors such as suppression of feeding on repellent compounds, known as antifeedants, and inhibition of male-to-male courtship. However, the gustatory receptors (GRs) required for responding to nonvolatile avoidance chemicals are largely unknown. Exceptions include Drosophila GR66a and...
متن کاملDrosophila Pheromone-Sensing Neurons Expressing the ppk25 Ion Channel Subunit Stimulate Male Courtship and Female Receptivity
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neu...
متن کاملA Drosophila Protein Specific to Pheromone-Sensing Gustatory Hairs Delays Males' Copulation Attempts
In insects, increasing evidence suggests that small secreted pheromone binding proteins (PBPs) and odorant binding proteins (OBPs) are important for normal olfactory detection of airborne pheromones and odorants far from their source. In contrast, it is unknown whether extracellular ligand binding proteins participate in perception of less volatile chemicals, including many pheromones, that are...
متن کاملThe Drosophila IR20a Clade of Ionotropic Receptors Are Candidate Taste and Pheromone Receptors
Insects use taste to evaluate food, hosts, and mates. Drosophila has many "orphan" taste neurons that express no known taste receptors. The Ionotropic Receptor (IR) superfamily is best known for its role in olfaction, but virtually nothing is known about a clade of ∼35 members, the IR20a clade. Here, a comprehensive analysis of this clade reveals expression in all taste organs of the fly. Some ...
متن کاملA Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior.
Detection of specific female pheromones stimulates courtship behavior in Drosophila melanogaster males, but the chemosensory molecules, cells, and mechanisms involved remain poorly understood. Here we show that ppk25, a DEG/ENaC ion channel subunit required for normal male response to females, is expressed at highest levels in a single sexually dimorphic gustatory neuron of most taste hairs on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 39 شماره
صفحات -
تاریخ انتشار 2003